

Fast Natural Gas / Biogas Analyser

- 2 minutes analysis time
- small 19" footprint
- ppb % levels using TCD, FID, PFPD, PDD
- highest accuracy

AN 305WA0420C

GAS offers custom configured GC analysers for many application fields for over 40 years. GAS analysers are designed to meet many standardised methods from GPA, ASTM, UOP, ISO, EN and others. The efficient configurations are based on proven GC technology, resulting in robust instruments with an optimal return on investment.

Although Natural Gas and Biogas have different origins, a number of analysed components are identical, yet concentration levels can vary. GAS CompactGC^{4,0} offers fast, sensitive and accurate analysis for both sample types. Depending on sample origin, additional channels are available, for instance for hydrocarbons, ammonia and ppb level sulphur components.

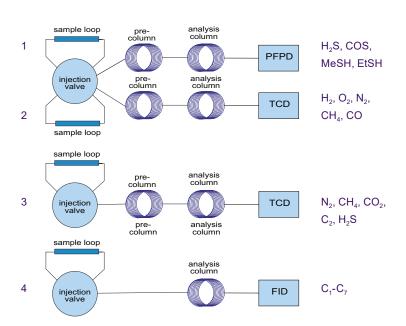


Figure 1. Diagram NG/Biogas analyser

Figure 2. CompactGC^{4.0}

1-4 channel CompactGC4.0

Figure 1 and 2 show a 4 channel CompactGC^{4.0} for the analysis of natural gas and biogas. Channel 2 and 3 measure permanent gases and light hydrocarbons using 2 TCD's. Channel 1 offers sensitive and selective analysis of volatile sulphur components like $\rm H_2S$, COS and mercaptans down to 20 pbb using Pulsed Flame Photometric Detector. On channel 4, $\rm C_1$ - $\rm C_7$ hydrocarbons (including isomers) are measured using FID from low ppm to high percentage. This channel can also be configured for the analysis of terpenes and siloxanes. Reduced configurations are available when less components are required, for instance a single channel TCD instrument for $\rm CH_4$ and $\rm CO_2$. Other channel options include for example: specific channel for ammonia measurement or temperature programmed analysis for enhanced hydrocarbon analysis.

Fast

CompactGC^{4.0} offers fast NG/Biogas analysis. The typical run to run time is 2 minutes (dependent on number of analysed components).

Small 19" footprint. Robust

The standardised 19" enclosure offers a small footprint, and the analyser can be combined with other instruments in a 19" rack.

Robust diaphragm process valves guarantee unattended operation for many years.

Data processing and Calorific Value calculation

Calculations according to ISO 6976 like Calorific Value, Gross heating value, density and compression factor, are fully integrated in Chromeleon data system, therefore data export to external software is not necessary. This results in a reliable and user friendly workflow. Calculation and reporting start automatically after each run (figure 11).

Results

Figure 4 shows analysis of H_2 , O_2 , N_2 , CH_4 and CO using Molsieve column and TCD, while figure 5 shows CO_2 , ethane and H_2S on Rt-QBond column. H_2S is analysed down to 25 ppm on this channel. For lower levels, figure 7 proofs ppb level low sulphur component analysis on PFPD; the limit of detection is 50 ppb. Figure 6 demonstrates C_1 - C_6 hydrocarbon analysis on Rtx-1 column and FID. C_7 can be analysed as well on this channel (runtime > 2 minutes), using isothermal column temperature. Hydrocarbons up to C_{20} can be analysed with the optional temperature programmable oven.

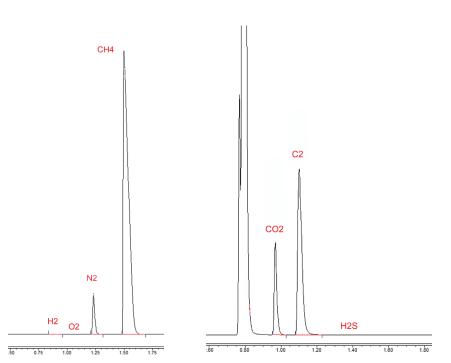


Figure 4. Permanent gases - Molsieve column/TCD Figure 5. Permanent gases - Rt-QBond column/TCD

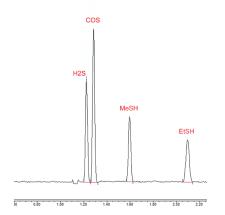


Figure 7. Low sulphur analysed by PFPD

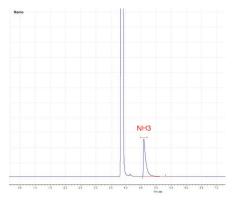


Figure 8. Ammonia (standard 1000 ppm)

Inj.	Injection Name		Re	t.Time			An	ea	
No.	Selected Peak:		1	min			mV*	min	
		TCD_Ch_3				TCD_Ch_3			
		H2	02	N2	CH4	H2	02	N2	CI
96	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00673	0.05408	0.05680	
97	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00674	0.05413	0.05689	
98	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00674	0.05411	0.05682	
99	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00672	0.05414	0.05689	
100	tm1 inclu ssr0 for 6 sec	0.821	0.963	1.254	1.559	0.00671	0.05409	0.05681	
101	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00673	0.05412	0.05685	
102	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00674	0.05410	0.05684	
103	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00674	0.05416	0.05683	
104	tm1 inclu ssr0 for 6 sec	0.821	0.963	1.254	1.559	0.00672	0.05406	0.05683	
105	tm1 inclu ssr0 for 6 sec	0.821	0.963	1.254	1.559	0.00673	0.05410	0.05686	
Maxin	num	0.821	0.963	1.254	1.559	0.00674	0.05416	0.05689	
Avera	ige	0.820	0.963	1.254	1.559	0.00673	0.05411	0.05684	
Minim	ium	0.820	0.963	1.253	1.559	0.00671	0.05406	0.05680	
Stand	ard Deviation	0.000	0.000	0.000	0.000	0.00001	0.00003	0.00003	
Relati	ve Standard Deviation	0.04%	0.03%	0.03%	0.02%	0.15%	0.05%	0.05%	

Figure 9. Example repeatability Molsieve/TCD channel

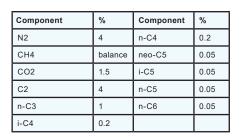


Figure 3. Calibration standard used for figure 4,5,6.

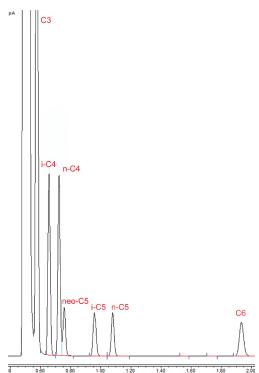


Figure 6. Hydrocarbons - Rtx-1 column/FID

Ammonia

Figure 8 displays the optional analysis of ammonia using TCD (1000 ppm calibration standard). The limit of detection is <100 ppm

Figure 9 and 10 demonstrate excellent repeatability (TCD channels).

Inj	. Injection Name		Re	t.Time			Ar	ea	
No	. Selected Peak:			min			mV*	min	
		TCD_Ch_3				TCD_Ch_3			
		H2	02	N2	CH4	H2	02	N2	C
96	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00673	0.05408	0.05680	
97	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00674	0.05413	0.05689	
98	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00674	0.05411	0.05682	
99	tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00672	0.05414	0.05689	
10	0 tm1 inclu ssr0 for 6 sec	0.821	0.963	1.254	1.559	0.00671	0.05409	0.05681	
10	1 tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00673	0.05412	0.05685	
10	2 tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00674	0.05410	0.05684	
10	3 tm1 inclu ssr0 for 6 sec	0.820	0.963	1.253	1.559	0.00674	0.05416	0.05683	
10	4 tm1 inclu ssr0 for 6 sec	0.821	0.963	1.254	1.559	0.00672	0.05406	0.05683	
10	5 tm1 inclu ssr0 for 6 sec	0.821	0.963	1.254	1.559	0.00673	0.05410	0.05686	
Maxi	mum	0.821	0.963	1.254	1.559	0.00674	0.05416	0.05689	
Ave	age	0.820	0.963	1.254	1.559	0.00673	0.05411	0.05684	
Mini	mum	0.820	0.963	1.253	1.559	0.00671	0.05406	0.05680	
Stan	dard Deviation	0.000	0.000	0.000	0.000	0.00001	0.00003	0.00003	
Rela	tive Standard Deviation	0.04%	0.03%	0.03%	0.02%	0.15%	0.05%	0.05%	,

Figure 10. Example repeatability Rt-QBond/TCD channel

Specification

Standard Methods: ISO 6974, 6976, 19739. ASTM D1945, D3588-98, D5303, D6228. GPA 2261, 2172. GOST

Configuration: 1-4 channel analyser based on GAS CompactGC^{4.0}

Detectors: TCD, FID, PFPD, PDD

Optional: Configuration/channels depend on requirements. For example:

- additional channels (max. 4) for ammonia, trace H₂, siloxanes, terpenes, heavier hydrocarbons and others

- stream selection valve

- stop flow valve

Sample tubing: Sulfinert® tubing for inert sample path (sulphur analysis)

Application: Custom configured analyser for the analysis of gaseous natural gas and biogas samples, containing

hydrocarbons, permanent gases, sulphur components and others

Sample requirements: See our pre-installation guide for additional requirements

Analysis Time: 2 minutes up to C_6 ; extended runtime for heavier components

Minimum detectability: TCD channel: < 50 ppm

FID channel: < 10 ppm PFPD channel: < 100 ppb

Accuracy: Dependant on external calibration and repeatability

Repeatability: < 0.1 % RSD for CH₄. (See tables on page 3)

Data systems: Chromeleon, OpenLab

Calculations: Calorific value (sup. and inf.), mean molecular weight, compression factor, relative density,

CLOBAL *

density, Wobbe index, BTU, and others on request.

		Natural gas	calculation	s		
Instrument	Trace1300 NGA			Sequence name	Data G.A.S. NGA	pack
Instrument Method	initial gas injection			Data Vault	ChromeleonLoca	I
Processing Method	New Processing Meth	od		Report Template	G.A.S. NGA Repo	rt Template
Data File	NGA mix repro TCDs			Seq. Line	10	
Injection Date	08/Jul/2014			Peaks	9	
Injection Time	13:21					
Calculation Type	Total					
Physical property	report for the dry g	as - combustion	at 15°C accordi	ing to ISO 6976		
Metering at 0°C and		I				
	Molar basis	Mass basis	Volumetric basis	Calories	Wobbe Index	BTU
Sup. Calorific Value	897.41 kJ/mol	49.60 MJ/kg	40.15 MJ/m3	9587.52 kcal/m3	50.74 MJ/m3	1077.55 BTU/ft
Inf. Calorific Value	809.73 kJ/mol	44.75 MJ/kg	36.23 MJ/m3	8650.79 kcal/m3	45.78 MJ/m3	972.27 BTU/ft
Mean mol weight	18.093 g/mol					
Compression factor	0.9972					
Relative Density	0.6261					
Density	0.8094 kg/m3					
Metering at 15°C and	Molar basis	Mass basis	Volumetric basis	Calories	Wobbe Index	вти
Sup. Calorific Value	897.41 kJ/mol	49.60 MJ/kg	38.04 MJ/m3	9084.12 kcal/m3	48.09 MJ/m3	1020.97 BTU/ft
Inf. Calorific Value	809.73 kJ/mol	44.75 MJ/kg	34.32 MJ/m3	8196.57 kcal/m3	43.39 MJ/m3	921.22 BTU/ft:
Mean mol weight	18.093 g/mol	44.75 IVIJ/Kg	34.32 IVIJ/III3	8190.57 KCdl/IIIS	45.59 1411/1115	921.22 B10/II
Compression factor	0.9977					
Relative Density	0.6258					
Density	0.7669 kg/m3					
Metering at 20°C and	Molar basis	Mass basis	Volumetric basis	Calories	Wobbe Index	вти
	897.41 kJ/mol	49.60 MJ/kg	37.39 MJ/m3	8928.14 kcal/m3	47.27 MJ/m3	1003.44 BTU/ft
Sup. Calorific Value			33.73 MJ/m3	8055.83 kcal/m3	42.65 MJ/m3	905.40 BTU/ft
	809.73 kJ/mol	44.75 MJ/kg				
Inf. Calorific Value	809.73 kJ/mol	44.75 MJ/kg				
Inf. Calorific Value Mean mol weight		44.75 MJ/kg				
Sup. Calorific Value Inf. Calorific Value Mean mol weight Compression factor Relative Density	809.73 kJ/mol 18.093 g/mol	44.75 MJ/kg				

Component Name	Retention min	Area pA*min	Amount mol%	
Propane	1.537	48.055	1.000	
2-Methylpropane	1.918	12.705	0.200	
n-Butane	2.240	12.784	0.200	
2,2-Dimethylpropane	2.400	3.985	0.050	
2-Methylbutane	3.381	3.887	0.050	
n-Pentane	3.866	3.909	0.050	
n-Hexane	5.709	4.688	0.050	
Carbon Dioxide	3.053	9.390	1.499	
Ethane	4.913	24.868	4.000	
Nitrogen	8.215	24.166	3.998	
Methane	9.517	395.946	89.035	
Dihydrogen sulphide	4.170	0.022	0.001	
Carbonyl Sulfide	4.863	0.001	0.001	
Methylmercaptan	8.075	0.048	0.001	

Figure 11. Calorific value report by Chromeleon.

GAS is an Interscience company