

Biogas analyser

- ASTM D1945, D1946, D6228, ISO 6974, 6975, 6976, GPA 2261, 2177, 2186, 2286
- Optional: siloxanes, terpenes, sulphur components, ammonia
- Robust, flexible

Get ready for tomorrow's analytics

23

Global Analyser Solutions

GAS offers custom configured GC analysers for many application fields for over 50 years. GAS analysers are designed to meet many standardised methods from GPA, ASTM, UOP, ISO, EN and others. The efficient configurations are based on proven GC technology, resulting in robust, highly productive instruments with an optimal return on investment.

Biogas is produced through biological processes, and its role is growing in sustainable energy production. Depending on production source, a wide range of components can be present. The main components are methane and carbon dioxide, and often hydrocarbons, permanent gases sulphur components, terpenes, siloxanes and ammonia are analysed as well. GAS offers several solutions for analysing these components.

Figure 1 Biogas analyser with external valve oven

Figure 2 Modular injector/detector technology

Biogas analyser configurations

Biogas analysers are available in many different configurations, ranging from single valve/detector instruments to comprehensive multi-channel analysers. The system configuration depends on components of interest and required accuracy and analysis time. Our analysers comply with standardised methods for natural gas analysis such as GPA (2261, 2177, 2186, 2286), ISO (6974, 6975), ASTM (D1945 and D1946, D6228) and others.

Main components

Figure 3 shows the analysis of biogas using a single TCD detector. Components of interest like methane, carbon dioxide, light hydrocarbons, hydrogen sulphide and permanent gases are effectively analysed using helium as carrier gas. Hydrogen is also measured, although an additional channel with nitrogen or argon carrier gas is preferred for better sensitivity and linearity. The instrument is equipped with an independently heated valve oven (figure 1) with robust diaphragm valves for extended lifetime. Figure 4 shows the excellent quantitative results. The modular injectors and detectors can be easily exchanged by the user in minutes, and offer high flexibility and low maintenance costs.

Figure 3 Biogas analyser TCD chromatogram

TRACE 1309 GC-FID Sample ID	Methane Area	Ethane Area	Propane Area	TRACE 1380 GC-TCD Sample ID	CO2 Area	Ethane	Nitrogen	Methane Area
Reprotest NGA 111	20139243	17399-44	640911	Reprotest NGA 111	2226454	5898353	5345064	905-07939
Reprotest NGA 112	20165079	1734190	638430	Reprotest NGA 112	2217093	5902294	5348925	90445635
Reprotest NGA 113	20044487	1731425	637100	Reprotest NGA 113	2215965	5903676	5346602	90526422
Reprotest NGA 114	20036909	1732525	637037	Reprotest NGA 114	2227435	5904121	5345091	90517862
Reprotest NGA 115	20018051	1730828	636031	Reprotest NGA 115	2213580	5897482	5346060	90501697
Réprotest NGA 118	20091304	1733729	637896	Reprotest NGA 116	2217298	5901460	5349411	90488306
Reprotest NGA 117	20025051	1729628	636297	Reprotest NGA 117	2222737	5903879	5349658	90549145
Reprotest NGA 118	20075028	1735024	637270	Reprotest NGA 118	2219658	5908502	5350-448	90595649
Reprotest NGA 119	19994570	1727838	636393	Reprotest NGA 119	2223410	5902305	5351021	90504111
Reprotest NGA 120	20012133	17280-47	635546	Reprotest NGA 120	2217703	5904050	5353904	90638117
Reprotest NGA 121	20010672	1728331	635273	Reprotest NGA 121	2225462	\$898589	5345321	90599110
Reprotest NGA 122	20031270	1730948	635984	Reprotest NGA 122	2219024	5902849	5351045	90574381
Reprotest NGA 123	19971058	1723629	634951	Reprotest NGA 123	2224970	5902603	5350288	90568154
Reprotest NGA 124	20019514	1728056	634989	Reprotest NGA 124	2226904	5901536	5349733	90598430
Reprotest NGA 125	20002092	1728500	635194	Reprotest NGA 125	2223668	5904325	5345351	90531033
Reprotest NGA 128	19945816	1722529	632508	Reprotest NGA 126	2232354	5907475	5351045	90539410
Reprotest NGA 127	19970722	17236-81	633248	Reprotest NGA 127	2224065	5903110	\$359234	90540979
Reprotest NGA 128	20004032	1728267	636239	Reprotest NGA 128	2219309	5904037	5352404	90670039
Reprotest NGA 129	20023385	1729288	835917	Reprotest NGA 129	2216183	5913483	5352165	90560228
Reprotest NGA 130	19907280	1721256	634269	Reprotest NGA 130	2221801	5909808	5346745	905-88078
Minc	19907280	1721258	632508	Min:	2213580	5897482	5345084	90445835
Max	20139243	1739944	840911	Max	2232354	5913483	5353904	90670339
liean:	20019430	1729295	636074	Mean:	2221734	5903698	5348926	90562235
Std D ev:	51251	4519	1835	Std Dev:	4782	3839	2770	59659
\$850	0.26	0.26	0.28	%R\$D:	0.72	0.07	0.05	0.07

Figure 4 TCD channel repeatability

Extended analysis:

Terpenes, siloxanes, sulphur components, ammonia

Since a broad range of feedstocks is used, biogas production can result in various additional components like terpenes, siloxanes, sulphur components, ammonia, heavier hydrocarbons and others. The concentration levels depend on type of feedstock, production process and operating conditions. Optional analysis channels are therefore offered with appropriate detectors.

Figure 5 shows hydrocarbon analysis using Flame Ionisation Detector, for analysing sub-ppm to % levels.

Figure 6 is an example of the analysis of low ppb level sulphur components using Quadrupole MS. The colours represent different masses used for quantification. Figure 7 shows trace level sulphur components using Pulsed Flame Photometric Detector.

Figure 6 Sulphur component analysis by GC-Quadrupole-MS. LOD= 5 ppb

Figure 8 Siloxanes using GC-ISQ. The colours represent different quantification masses. LOD=5 ppb..

Low level ppb siloxanes analysis are analysed in figure 8 (ISQ Mass Spectrometer). Figure 9 and 10 demonstrate measurement of ammonia using TCD (1000 ppm standard, LOD <50ppm) and Pulsed Discharge Detector (2,2 ppm, LOD: ppb range).

Figure 5 Chromatogram hydrocarbon analysis using FID.

Figure 7 Sulphur component analysis using PFPD. LOD= 25 ppb.

Figure 9 1000 ppm NH₃ using TCD (LOD < 50 ppm) Figure 10 2,2 ppm NH₃ using PDD (LOD < 1 ppm)

Figure 11

Comprehensive biogas analyser equipped with TCD, FID and ISQ Quadrupole MS

Specification

Standardised methods:	GPA 2261, 2177, 2186, 2286; ISO 6974, 6975, 1976; ASTM D1945, D1946, D6228					
Configuration:	1-4 channel instrument based on Thermo TRACE GC 1600					
	Also available: Biogas analyser based on CompactGC $^{4.0}$ (fig. 12; see application note)					
Optional:	- Additional channels for hydrogen, heavier hydrocarbons, sulphur, terpenes, siloxanes, ammonia and others, using FID, (P)FPD, Mass Spectrometer (fig. 11), PDD					
	- Stop flow valve, back pressure regulator					
	- Stream selector					
Sample tubing:	Sulfinert® tubing for inert sample path (sulphur and other polar components)					
Application:	Custom configured analyser for the analysis of gaseous biogas and natural gas samples, containing					
	hydrocarbons, permanent gases, sulphur components, siloxanes, terpenes, ammonia and other					
	components					
Sample requirements:	See our pre-installation guide for additional requirements					
Analysis time:	2-20 minutes, depending on configuration and analysed components					
Minimum detectability:	Dependent on configuration, detector and sample composition. Examples:					
	- Permanent gases and hydrocarbons using TCD: < 0.001%					
	- Sulphur components using FPD: < 200 ppb					
	- Sulphur components using PFPD: < 25 ppb					
	- Hydrocarbons using FID: < 1 ppm					
	- Sulphur components, siloxanes, terpenes using GCMS-AEI (Advanced Electron Ionisation): < 1 ppb					
	- Ammonia using PDD: < 100 ppb					
Dynamic Range:	TCD: 4 decades; FID: 7 decades					
Accuracy:	Depending on external calibration and repeatability					
Repeatability:	Depending on analysis channel. < 0.1 % RSD for CH $_4$ (example: see figure 4)					
Data systems:	Chromeleon, OpenLab					
Calculations:	Calorific value (sup. and inf.), mean molecular weight, compression factor, relative density,					
	Wobbe index, BTU. Custom calculations on request.					

Figure 12 Biogas/Natural gas analyser based on CompactGC^{4.0}, with small footprint and fast analysis time (application note available).

powered by interscience

Turnkey customised GC & GC/MS solutions

Expert & education centre Learn from the Xperts!

GAS, IS-X & SampleQ are Interscience brands

Fully automated solutions for sample preparation