

Greenhouse gas analyser

- Air, water and soil samples
- LOD N₂O < 20 ppb
- \bullet Manual, online & automated headspace sampling
- Highest uptime, robust

Get ready for tomorrow's analytics

GAS offers custom configured GC analysers for many application fields for over 50 years. GAS analysers are designed to meet many standardised methods from GPA, ASTM, UOP, ISO, EN and others. The efficient configurations are based on proven GC technology, resulting in robust, highly productive instruments with an optimal return on investment.

Burning of fossil fuels (like coal, oil and natural gas), agriculture and land clearing contribute to increasing levels of greenhouse gases, which affects earth's temperature. GAS offers the greenhouse gas analyser for measuring ppb/ppm to % levels of CO_2 , CH_4 , N_2O and SF_6 .

Figure 1 Greenhouse gas analyser based on Thermo GC1600 with external valve oven.

Manual loop filling and online analysis

The greenhouse gas analyser is configured with two analytical channels. The first channel is dedicated to measuring CH_4 (methane) and CO_2 (carbon dioxide). It incorporates a 10-port valve for injection/backflush, a methaniser, and a FID (Flame Ionisation Detector). The methaniser converts CO_2 to methane, allowing for sub-parts per million (ppm) detection by the FID. Optionally, a TCD (Thermal Conductivity Detector) can be included in series with the methaniser-FID for measuring high percentage levels of CO_2 . This analyser setup allows for manual loop filling and online analysis using a sample pump. Manual loop filling entails the manual introduction of gas samples, while online analysis ensures continuous or real-time monitoring of gas samples through a sample pump.

 N_2O is detected using an ECD (Electron Capture Detector) on the second channel, following separation from air and CO_2 . Water is backflushed to a vent. Additionally, SF_6 can be measured on this channel, achieving sub-parts per trillion (ppt) level detection limits.

Sampling from Headpace vials

Automated sampling from headspace vials, for instance in case of soil samples or organic material, is provided by the setup shown in figure 3 & 8. After injection of the gas sample, water is backflushed by the upper valve, and the lower valve directs CH_4/CO_2 to methaniser-FID, and N_2O/SF_5 to ECD.

Figure 4 CH_4 and CO_2 using Methaniser/FID detection

Figure 5 $\,N_{_2}O$ and $\rm SF_{_6}$ using ECD detection

Results

Figure 4 shows the chromatogram of the methaniser/FID channel, while figure 5 shows N₂O and SF₆ detection on ECD. The minimum detectability is < 50 ppb for CH₄, < 100 ppb for CO₂ and < 20 ppb for N₂O. SF₆ is analysed in the sub-ppt range.

The Electron Caputure Detector requires make-up gas for providing electrons that are captured during detection by the component of interest. Nitrogen or argon/methane (95:5) are used for this purpose. The best sensitivity is achieved using the latter: LOD < 20 ppb for Ar/CH₄ vs LOD < 100 ppb for N2. See figure 6.

All components are analysed with repeatability < 1 % RSD. Figure 7 shows the statistical results for N_2O at 330 ppb concentration level in air.

	820
TRACE 1500 GC-C	N20
Sample ID	Area
niowag_N2O_067	4713403.00
niowag_N2O_068	4695494.00
niowag_N2O_069	4689598.00
niowag_N2O_070	4779851.00
niowag_N2O_071	4731030.00
niowag_N2O_072	4706694.00
niowag_N2O_073	4780556.00
niowag_N2O_074	4778467.00
niowag_N2O_075	4748329.00
niowag_N2O_076	4784289.00
Min:	4689598.00
Max	4784289.00
Mean:	4740771.10
Std Dev:	38232.97
%RSD:	0.81

Figure 7 Repeatablity (%RSD) of N_2O in air at 330 ppb level.

Figure 8 Triplus 500 Headspace autosamper for analysis of greenhouse gases in water, soil and organic materials

Figure 6 Effect of make-up gas on ECD sensitivity for N₂O. Blue: N₂; black: Ar/CH₄ make-up gas

Specification

Application:	Analysis of greenhouse gases in air, water, soil or organic material samples
Configuration:	- Manual sampling/online analysis
	- Automated headspace sampling
Detectors:	Methansiser-FID (Flame Ionisation Detector)
	ECD (Electron Capture Detector)
	TCD (Thermal Conductivity Detector) optional
Injection:	GSV (Gas Sampling Valve) or Head Space sampler
Optional:	Head Space sampling using GSV (closed loop sampling)
	TCD for high levels of CO_2
	Bypass valve in case of high O_2 content
Analytes:	CH_4 , CO_2 , N_2O , SF_6 ; chlorofluorohydrocarbons on request
Analysis Time:	5 minutes
Minimum Detectability:	CH ₄ < 50 ppb
	CO ₂ < 100 ppb
	$N_{2}O$ < 20 ppb using Ar/CH ₄ as ECD make-up gas;
	< 100 ppb using N_2 as ECD make-up gas
	SF ₆ : sub-ppt range
Repeatability:	1% RSD (n=10) or better (N $_2$ O (a) 330 ppb; CH $_4$ (a) 2 ppm; CO $_2$ (a) 10 ppm; Gas Sampling Valve)
Data system:	Chromeleon

Figure 9 Modular iConnect FID iConnect injector and detector modules on GC1600 are exchanged by the user in a couple of minutes, offering great flexibility and low operational costs

powered by interscience

Turnkey customised GC & GC/MS solutions

Expert & education centre Learn from the Xperts!

GAS, IS-X & SampleQ are Interscience brands

Fully automated solutions for sample preparation